
LA-UR-15-26774
Approved for public release; distribution is unlimited.

Title: Measurement and Characterization of Haswell Power and Energy
Consumption

Author(s): Huang, Song
Lang, Michael Kenneth
Pakin, Scott D.
Fu, Song

Intended for: 3rd International Workshop on Energy Efficient Supercomputing (E2SC),
2015-11-15 (Austin, Texas, United States)

Issued: 2016-04-04 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Measurement and Characterization of Haswell Power and
Energy Consumption

Song Huang1,2, Michael Lang2, Scott Pakin3, and Song Fu1

1Department of Computer Science and Engineering, University of North Texas
2Ultrascale Systems Research Center, Los Alamos National Laboratory

3Applied Computer Science Group, Los Alamos National Laboratory
songhuang@my.unt.edu, mlang@lanl.gov, pakin@lanl.gov, song.fu@unt.edu

ABSTRACT
The recently introduced Intel Haswell processors implement
major changes relative to their predecessors with respect to
power management. Haswell processors are used in NNSA’s
latest supercomputer, Trinity, hosted at Los Alamos National
Laboratory. In this paper we measure and analyze a number
of power-based parameters of Haswell that are of great impor-
tance for the energy consumption of applications. We study
three HPC benchmarks, HPL, STREAM, FIRESTARTER
and a hydrodynamics application, CLAMR. These are rep-
resentative of workloads stressing different components of
computers. Our experimental results show that real-time
on-board power monitoring consumes substantial power if
no optimization is performed; adapting P-states provides a
cost-effective way to improve the power-performance of ap-
plications; energy savings for hyperthreading was dependent
on the application, specifically with the CLAMR application
we see 19.8% energy savings with a high thread count, and a
19.5% energy loss for a fewer threads; and HPC applications
should employ differentiated core-affinity strategies in order
to maximize the performance:power ratio. Moreover, we
study the imbalance of sockets on a server in their power
and energy use and propose approaches to mitigate such
imbalance.

Keywords
Power and energy consumption, high performance computing,
Intel Haswell; benchmarking; modeling

1. INTRODUCTION
Power consumption and energy efficiency have become

important issues for researchers and engineers in the high-
performance computing (HPC) community [15] as the power
demand of large-scale HPC systems can easily exceed the
power supply of an entire city [1]. Efficient allocation and
effective utilization of power and energy in machine rooms
are demanded by industry and government sectors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
E2SC2015, November 15-20, 2015, Austin, TX, USA
ACM 978-1-4503-3994-0/15/11 ...$15.00.
DOI: http://dx.doi.org/10.1145/2834800.2834807

HPC systems comprise compute nodes, interconnects, and
storage. Of these, the nodes—and within these, the CPUs—
typically consume the bulk of the overall power. Conse-
quently, CPU vendors have been incorporating increasingly
sophisticated power-saving features in their products. The
Xeon E5-2600 v3 family, code-named Haswell-EP, is Intel’s
latest high-performance processor. It includes advanced
power control in addition to other enhancements such as
more cores, more memory, and more bandwidth. Most im-
portantly, unlike in previous processors, the voltage and
frequency of individual Haswell cores can be adjusted dy-
namically, at least in the server-class parts [7].

An important question that we address is, How will
new power management techniques influence the power-
performance of HPC applications? In order to make the
best use of the power management features on Haswell for
energy-efficient high performance computing, we need to
measure and characterize them in running HPC applications
and benchmarks.

In this paper we evaluate on computer servers equipped
with Haswell-EP processors three HPC benchmark codes—
HPL, FIRESTARTER, and STREAM—and a proxy appli-
cation, CLAMR. These codes represent a gamut of HPC
applications from completely compute-bound to memory-
bound and mixed workloads. We investigate various power
management techniques—RAPL power monitoring, P-states,
hyperthreading, and core affinity—and their effects on the
performance:power ratio of these codes. Our experimental
results reveal that without optimization, the on-board power
monitoring via RAPL can consume 28.6% more power than
idle power. P-states affect the package power rather than
the DRAM power, and P-states provide an effective way for
energy saving. The benefit of hyperthreading depends on
the workload type. Enabling hyperthreading can reduce the
execution time and save energy for compute-bound applica-
tions. Its effect on memory-bound codes is almost neutral.
To maximize the power-performance gain, differentiated core
affinity strategies should be employed according to the work-
load type, which can improve the performance and energy
efficiency by 19–48%. Moreover, we observe different pat-
terns of power and energy imbalance between sockets on a
server. Factors are identified and approaches are proposed
to mitigate the imbalance. Our experimental results and
the corresponding findings provide valuable insights into the
performance, power and energy of HPC applications run on
the new Haswell-EP processors. They guide the development
of new, efficient and effective power-management schemes.

The rest of this paper is organized as follows. We first

present the Haswell processors’ new power-management fea-
tures in Section 2. The experimental setup including the hard-
ware configuration, HPC workloads, and power-performance
metrics and tools, is described in Section 3. Section 4 presents
and discusses the experimental results of power and energy
consumption on a Haswell-EP server. Future work is dis-
cussed in Section 5. Related research is presented in Section 6.
Finally, Section 7 draws some conclusions from our measure-
ments.

2. POWER MANAGEMENT IN HASWELL
Haswell includes a number of new power-management

features. The two that we leveraged to complete our ex-
periments are per-core power management and independent
un-core frequency scaling.

Per-core power management.
This the main innovation of the Haswell micro-architecture.

It provides independent control of each CPU’s power con-
sumption. This control includes frequency scaling (DVFS)
and power capping. With this functionality we can put some
cores in lower power states to enable turbo mode on other
cores. This gives us the ability to tune the set of cores for
various computational tasks. Note that in our particular
experimental setup we were unable to enable per-core power
capping due to hardware limitations.

Independent un-core frequency scaling.
On the Haswell there are seperate power control units for

each core and the un-core (memory controller, L3 caches,
and IO) that are independent from the CPU power plane.
In particular, this decouples the CPU frequency from the
memory frequency. Hence, one could run at a high rate
while the other runs at an reduced rate to better balance
application requirements.

Other innovations in power savings.
Some other Haswell power-saving features, which we did

not evaluate, include new deeper C-states, new “S0ix” low-
power states, more energy-efficient turbo mode, and more
aggressive gating of logic. Additionally, Haswell provides
seperate AVX base and turbo states. When the processor
is using AVX instructions the maximum turbo frequency is
lower than without AVX instructions [8].

3. EXPERIMENTAL SETUP

3.1 Hardware
For our experimental evaluation we use two Dell Pow-

erEdge R730 rack servers, each with two Intel Xeon E5-2660
v3 processors, 128GB RAM and one 200GB SSD, which is a
typical setting for HPC machines, at least at LANL. Node
details are presented in Table 1. We use a Watts Up Pro
digital power meter for external power measurements. This
power meter provides AC power consumption data for a full
node with up to 1 second resolution.

3.2 Workloads
We select four programs as benchmarks to run on the

Haswell-based servers and measure the power and energy
consumption with various power management approaches
applied. These programs represent a gamut of application

Table 1: Technical specifications of the experimental envi-
ronment

Compute server Dell PowerEdge R730
Processor 2x Intel Xeon E5-2660 v3 (Haswell-EP)
Cores/socket 10
Threads/socket 20
CPU frequency 1.2–2.6 GHz
Turbo frequency 3.3 GHz
Cache 25 MB Intel Smart Cache
TDP/socket 105W
Enabled features Uncore frequency scaling, per-core P-

states, energy-efficient turbo

characteristics from completely compute-bound (HPL and
FIRESTARTER) to memory-bound (STREAM) and mixed
(CLAMR).

CLAMR (Compute Language Adaptive Mesh Refine-
ment) [14] is a DOE proxy application developed at LANL as
a test bed for algorithm development for heterogeneous exas-
cale supercomputers. CLAMR is a cell-based adaptive mesh
refinement (AMR) hydrodynamic application that solves the
shallow-water equations. The computational model uses Eu-
lerian equations to simulate the fluid flow. We use CLAMR’s
OpenMP version in our experiments.

FIRESTARTER [6] aims at creating near-peak power
consumption on standard compute nodes. It stresses the most
important power consumers: CPU (cores + uncore compo-
nents) and main memory. It can reliably exceed the power
consumption of other stress tests and create steady power-
consumption patterns. It can also be used as a maximum
power consumption baseline for application energy-efficiency
studies.

HPL (High Performance Linpack) [9] solves a (ran-
dom) dense linear system in double-precision arithmetic on
distributed-memory computers. It is a highly scalable MPI
program, heavily optimized to squeeze the utmost perfor-
mance out of parallel machines. With its compute-heavy
kernel, HPL approaches the theoretical peak performance
(in Gflops/s) of most machines.

STREAM [13] is a synthetic benchmark designed to mea-
sure the sustainable memory bandwidth and the correspond-
ing computation rate of four vector kernels, which perform
vector operations on long vectors. STREAM is designed to
work with datasets that are much larger than the available
cache on a system. The results are intended to be indicative
of the performance of very large, vector-style applications.
It measures the performance of four long vector operations:
“Copy” measures transfer rates in the absence of arithmetic;
“Scale” additionally includes a simple arithmetic operation;
“Sum” further includes a third operand to enable multiple
load/store ports on vector machines to be tested; and “Triad”
performs chained/overlapped/fused multiply/add operations.

3.3 Tools and Metrics
In addition to using an external power meter we also

poll for power measurements inband via the Intel Running
Average Limit (RAPL) interface. RAPL returns samples
averaged over time of various power planes (per core, per
package, uncore, and DRAM). RAPL data is made available
through machine-specific registers (MSRs). On our particular
platform, hardware limitations restricted us to per-package
readings and DRAM readings.

0 20 40 60 80 100 120

60
70

80
90

10
0

11
0

12
0

13
0

Collecting All Attributes from PAPI

Time(1s)

P
ow

er
(w

)
1s 10s

(a) Retrieving all 28 RAPL attributes

0 20 40 60 80 100 120

60
70

80
90

10
0

11
0

12
0

13
0

Collecting 4 Attributes from PAPI

Time(1s)

P
ow

er
(w

)

1s 10s

(b) Retrieving the selected four attributes

Collect All Attributes Collect 4 Attributes

Po
w
er
(w
)

0
5

10
15

20
25

30

1s
10s

(c) Average overhead

Figure 1: Overhead of Power Monitoring

PAPI (Performance API) [20] is a platform-independent
library for gathering performance-related data from hardware
performance counters. The PAPI interface provides power
and energy measurements from RAPL in-line to running
programs. It uses the MSR driver to gather RAPL values.

PAPI and the external power meters report power mea-
surements periodically (at possibly different frequencies). If
the power consumption of an HPC workload is steady, we
can take the mean power consumption P and multiply it by
the execution time T of the workload, which results in the
energy consumption E in joules: E = P · T . We can use this
metric when the resource usage is steady.

4. EXPERIMENTAL RESULTS
In this section, we present measured power and energy con-

sumption while running HPC-style workloads (Section 3.2)
on our Haswell-EP compute nodes. We are particularly in-
terested in evaluating the overhead of power monitoring and
the influences of hyperthreading, core affinity, and various
P-states on power consumption and performance.

4.1 Overhead of Power Monitoring
RAPL enables on-board power monitoring of the processor

and DRAM without using external power meters. By reading
the RAPL MSRs, PAPI can record real-time data of the
power and energy consumption. The thread that runs PAPI
(we call it the PAPI thread) is executed on a CPU core and the
retrieved MSR readings are stored in DRAM, both of which
draw power. In the first set of experiments, we aim to analyze
this overhead. To this end, we use the external power meter
to measure the node-wide power consumption both in the idle
state and during the execution of the PAPI thread. In the
idle state, only minimal OS activity (e.g., interrupt handlers
and a few core dæmons) is present, and this consumes very
little power.

Figure 1 shows the extra power drawn for on-board power
monitoring. The idle power of the server is 69W. Because
the resolution of the Watts Up Pro digital power meter is no
finer than one second, we measure the monitoring overhead
as the sampling rate of the PAPI thread at 1-second and
10-second intervals. By default, the PAPI thread retrieves
all 28 RAPL attributes. Figure 1a shows that the overhead
of one-second monitoring is steady while that of 10-second
monitoring fluctuates. Moreover, from Figure 1c we can see
the overhead of one-second monitoring is more than twice
that of 10-second monitoring which is 10.4W on average.

However, not all of the 28 RAPL attributes are relevant
to power and energy monitoring. Some of them are not even

supported by the E5-2660 v3 processor, such as those for the
PP0 and PP1 power planes. We select four RAPL attributes
for power monitoring. They are Package ENERGY:Package0,
DRAM ENERGY:Package0, Package ENERGY:Package1,
and DRAM ENERGY:Package1. Figure 1b shows that the
power draws from both one-second and 10-second monitoring
drop and the latter becomes more sporadic. The average
power draw in Figure 1c indicates that using four RAPL
attributes can reduce the overhead by 78.9% (10-second rate)
and 16.9% (1-second rate) relative to using all 28 attributes.

On-board RAPL power monitoring by PAPI can cause
up to 32% more power draw than the idle power in the
steady state. This overhead can be reduced by using longer
monitoring period and less RAPL attributes. Combining
this two achieves a 90.1% decrease of the overhead in our
experiments. In production runs, other factors, such as
the granularity of power control and complexity of power
management mechanism, will also affect the selection of
power monitoring parameters.

Moreover, we measured the power usage of other compo-
nents, such as disk and network, when running the bench-
marks. The average power consumption is 18W.

4.2 Effects of P-States on Applications’
Power-Performance

As listed in Table 1, the E5-2660 v3 Haswell-EP processor
supports a frequency range from 1.2 GHz to 2.6 GHz and a
turbo frequency at 3.3 GHz. In our next set of experiments,
we vary P-states and measure the performance and power
consumption of running the four benchmark programs. We
scale the P-states to 1.2, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3, and
2.5 GHz with the “powersave” governor and to 2.9 GHz with
the “performance” governor.

Figure 2 shows the package power draws by HPL,
STREAM, and CLAMR and Figure 4a is for FIRESTARTER.
In the figures, we can see the changing of P-states has a di-
rect and clear effect on the power use of all four applications.
The higher the P-state is, the more power is drawn until
it hits the turbo frequency, that is 2.8-3.3 GHz. Related
research [19] shows that the power use of the CPU follows

P = c · V 2 · f + Ps (1)

with

f ∝ (V − Vth)α/V (2)

as V � Vth, P ∝ f (α+1)/(α−1). According to our experimen-
tal results, the value of α for the Haswell-EP processor is
between 1.22 and 1.49.

0 100 200 300 400 500 600 700

0
50

10
0

15
0

20
0

HPL Package Power Consumption

Time(.1s)

PA
C

K
A

G
E

 P
O

W
E

R
(w

)

1.2
1.3

1.5
1.7

1.9
2.1

2.3
2.5

2.9
performance

(a) HPL (compute bound)

0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

STREAM Package Power Consumption

Time(.1s)

PA
C

K
A

G
E

 P
O

W
E

R
(w

)

1.2
1.3

1.5
1.7

1.9
2.1

2.3
2.5

2.9
performance

(b) STREAM (memory bound)

0 100 200 300 400 500 600

0
50

10
0

15
0

CLAMR Package Power Consumption

Time(.1s)

PA
C

K
A

G
E

 P
O

W
E

R
(w

)

1.2
1.3

1.5
1.7

1.9
2.1

2.3
2.5

2.9
performance

(c) CLAMR (mixed)

Figure 2: Package power draw from running benchmark applications at different P-states

0 100 200 300 400 500 600 700

0
5

10
15

20

HPL DRAM Power Consumption

Time(.1s)

D
R

A
M

 P
O

W
E

R
(w

)

1.2
1.3

1.5
1.7

1.9
2.1

2.3
2.5

2.9
performance

(a) HPL (compute bound)

0 50 100 150 200 250 300 350

0
10

20
30

40
50

STREAM DRAM Power Consumption

Time(.1s)

D
R

A
M

 P
O

W
E

R
(w

)
1.2
1.3

1.5
1.7

1.9
2.1

2.3
2.5

2.9
performance

(b) STREAM (memory bound)

0 100 200 300 400 500 600

0
5

10
15

20

CLAMR DRAM Power Consumption

Time(.1s)

D
R

A
M

 P
O

W
E

R
(w

)

1.2
1.3

1.5
1.7

1.9
2.1

2.3
2.5

2.9
performance

(c) CLAMR (mixed)

Figure 3: DRAM power draw from running benchmark applications at different P-states.

0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

25
0

Firestarter Package Power Consumption

Time(.1s)

PA
C

K
A

G
E

 P
O

W
E

R
(w

)

1.2
1.3

1.5
1.7

1.9
2.1

2.3
2.5

2.9
performance

(a) Package power draw

0 50 100 150 200 250 300 350

0
10

20
30

40
50

Firestarter Package Power Consumption

Time(.1s)

PA
C

K
A

G
E

 P
O

W
E

R
(w

)

1.2
1.3

1.5
1.7

1.9
2.1

2.3
2.5

2.9
performance

(b) DRAM power draw

Figure 4: Power consumption of FIRESTARTER with different P-states

1.2 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.9 Performance

Energy Consumption

Frequencies(GHz)

E
ne

rg
y

C
on

su
m

pt
io

n(
J)

0
10

00
20

00
30

00
40

00
CLAMR
HPL
STREAM

Figure 5: Energy consumption with
P-states

0 50 100 150 200 250 300

0
20

40
60

80
10

0
12

0

Time(.1s)

PA
C

K
A

G
E

 P
O

W
E

R
(w

)

Enabled 40P P0
Enabled 40P P1

Enabled 20P P0
Enabled 20P P1

Disabled 20P P0
Disabled 20P P1

(a) Package power use

0 50 100 150 200 250 300

0
2

4
6

8
10

12

Time(.1s)

D
R

A
M

 P
O

W
E

R
(w

)

Enabled 40P P0
Enabled 40P P1

Enabled 20P P0
Enabled 20P P1

Disabled 20P P0
Disabled 20P P1

(b) DRAM power use

30
19

180 160

14 14

1

10

100

1000

Enabled (40) Enabled (20)

Exection time(S)
PKG power (PKG0+PKG1)
RAM power (RAM0+RAM1)

30
19 20

180 160 160

14 14 14

5900
3400 3500

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

Enabled (40) Enabled (20) Disabled (20)

Exection time(S) PKG power--PKG0+PKG1 (W)

RAM Power--RAM0+RAM1 (W) Energy (J)

(c) Comparison

Figure 6: Power-performance of running HPL (compute bound) with and without hyperthreading

The influence of P-states on the power-performance of
different types of applications is different. For compute-
bound HPL, increasing the P-state from 1.2 GHz to 2.6 GHz
leads to a 50.7% decrease of the execution time. An additional
8.2% decrease is achieved by using the turbo frequency. A
similar trend is observed when running CLAMR. However,
for memory-bound STREAM, the change of P-states does
not yield considerable benefit for the performance, as the
execution time is determined by the memory bandwidth
instead of CPU’s P-states. In contrast to package, the power
consumption of DRAM is insensitive to P-states.

Another interesting finding is that we did not observe clear
turbo boost during the execution of HPL, STREAM, and
CLAMR, as the power draw of each package is no higher
than 105W, that is the TDP. In contrast, FIRSTARTER can
achieve the near-peak power use. In Figure 4, we observe
that the package power consumption reaches 120.8W for 17.5
seconds before an abrupt drop to the TDP, as the thermal
envelop is used up, which terminates the turbo boost. Unlike
the other three codes whose workloads are determined by
their problem sizes, FIRESTARTER is a test code that
continues running until it is manually terminated. Therefore,
its energy use data is not comparable with those of the other
applications.

Figure 5 presents the energy consumption of HPL,
STREAM, and CLAMR run at different P-states. Gener-
ally speaking, the higher energy efficiency is achieved at the
lower P-states. For example, HPL, STREAM, and CLAMR
consume the least amount of energy when the P-state is at
1.2, 1.2, and 1.3 GHz, respectively. The highest energy uses
are all achieved at the turbo frequency. A reason for this
phenomenon is that we conduct our experiments on a single
node. When running MPI applications on multiple nodes,
the inter-node communication and phase synchronization
will complicate the energy use pattern. HPL achieves the
highest ratio of maximum to minimum energy consumption,
which is 1.53 times.

4.3 Effects of Hyperthreading on Power- Per-
formance

Intel Xeon E5-2660 v3 processors support two-way hyper-
threading. Because each processor is equipped with 10 cores,
in total 40 hyperthreads are available simultaneously on the
20 physical cores. In this set of experiments, we evaluate
the impact of hyperthreading on the execution time, power
and energy use of the benchmark applications. Because the
number of application threads of FIRESTARTER is not con-
figurable, we focus on the other three codes: HPL, STREAM,
and CLAMR.

In our experiments, hyperthreading is always enabled in
the BIOS. We enable and disable hyperthreading by setting
the logical CPU cores “online” and “offline” respectively in
the OS. Two levels of workload intensity are tested, that is
high (40 application threads are run) and low (20 application
threads are run).

Figures 6a and 6b show the power consumption of the
package and DRAM while running HPL with and without
hyperthreading and at the two workload levels. We observe
the execution time decreased from 29s to 19s (34%) after
disabling hyperthreading under the high workload. This is
mostly caused by the contention among HPL threads when
running on fewer CPU cores. When the low workload is
employed, the execution time, package power, and energy

use drop as the contention and synchronization overheads
reduce. Enabling hyperthreading can slightly (by 2.9%)
reduce the energy consumption. By switching from the high
workload to the low workload, the energy consumption drops
from 5,900J to 3,400J (42.4% decrease) with hyperthreading.

Compared with HPL, the effects of hyperthreading on
STREAM (in Figure 7) and CLAMR (in Figure 8) are differ-
ent. STREAM is memory bound. The contention under the
high workload caused by disabling hyperthreading does not
significantly affect the execution time, i.e., a 17.7% increase,
and 14.2% and 10.5% decreases of package and DRAM power
respectively. The overall effect is that the energy use is in-
creased by 1.7%. Moreover, using the low workload does not
yield much energy saving. A similar pattern is observed for
CLAMR. However, hyperthreading causes CLAMR to save
19.8% energy under the high workload but consume 19.5%
more energy under the low workload.

The above results indicate that hyperthreading is prefer-
able in terms of energy savings, especially for compute-bound
applications and when the number of application threads is
large.

4.4 Power-Energy Imbalance of the Two
Sockets

The compute server under test has two sockets, each with a
Xeon E5-2660 v3 Haswell-EP processor. In the experiments,
we find that the two sockets do not display the same power
and energy use. Thus we aim to quantify the extent of such
imbalance and find out how to mitigate it.

Figure 9 presents the difference of the power consumption
between the two sockets when running HPL, STREAM,
and CLAMR at the two workload levels, with and without
hyperthreading. Compared with the total package power
use of the two sockets in Figures 6-8, the package power
imbalance is not significant, ranging from 0.3% to 5.9%.
The highest imbalance happens when CLAMR is run at the
low workload level with hyperthreading enabled. Socket 0
consumes 7.3 W more power than Socket 1. An explanation
is that the 20 CLAMR threads are not evenly distributed
on the two sockets (40 hyper threads in total), with more
threads being executed on Socket 0 than Socket 1.

Among the three tested applications, HPL and CLAMR
experience more imbalance of the package power than
STREAM, as HPL is more compute intensive and thus its
package power is more sensitive to the imbalance. Another in-
teresting observation is that for HPL, Socket 1 always draws
more power than Socket 0. In contrast, for both STREAM
and CLAMR, this bias happens only when the high workload
level is employed and hyperthreading is enabled. A possible
explanation is that the workloads among HPL threads are
not equivalent.

Compared to the package power, the DRAM power, as
shown in Figure 9b, has clearer patterns of the imbalance:
for STREAM and CLAMR, enabling hyperthreading or halv-
ing the high workload can mitigate the power imbalance.
However, for HPL, enabling hyperthreading does not help
balance the DRAM power. Moreover, the DRAM power
has less variability of imbalance than the package power,
as the ratio of the highest to the lowest imbalance is 5.7
(DRAM power) versus 18.4 (package power), as the total
power consumption of DRAM is much lower than that of
package.

Figure 10 shows the energy imbalance of the two sockets.

0 100 200 300

0
20

40
60

80
10

0

Time(.1s)

PA
C

K
A

G
E

 P
O

W
E

R
(w

)

Enabled 40T P0
Enabled 40T P1

Enabled 20T P0
Enabled 20T P1

Disabled 20T P0
Disabled 20T P1

(a) Package power use

0 100 200 300

0
5

10
15

20
25

Time(.1s)
D

R
A

M
 P

O
W

E
R

(w
)

Enabled 40T P0
Enabled 40T P1

Enabled 20T P0
Enabled 20T P1

Disabled 20T P0
Disabled 20T P1

(b) DRAM power use

33.4 33.8 36.2

151.24 136.33 135.46

35.44 33.18 32.3

6235.24 5729.34 6072.74

1

10

100

1000

10000

Enabled (40) Enabled (20) Disabled (20)

Exection time(S) PKG power (W) RAM Power (W) Energy (J)

(c) Comparison

Figure 7: Power-performance of running STREAM (memory bound) with and without hyperthreading

0 100 200 300 400

0
20

40
60

80
10

0

Time(.1s)

PA
C

K
A

G
E

 P
O

W
E

R
(w

)

Enabled 40T P0
Enabled 40T P1

Enabled 20T P0
Enabled 20T P1

Disabled 20T P0
Disabled 20T P1

(a) Package power use

0 100 200 300 400

0
2

4
6

8
10

12

Time(.1s)

D
R

A
M

 P
O

W
E

R
(w

)

Enabled 40T P0
Enabled 40T P1

Enabled 20T P0
Enabled 20T P1

Disabled 20T P0
Disabled 20T P1

(b) DRAM power use

30.2 38.7 30.8

137.82 122.78 129.5

16.53 15.72 16.12

4661.24 5359.86 4485.01

1

10

100

1000

10000

Enabled (40) Enabled (20) Disabled (20)

Exection time(S) PKG power (W) RAM Power (W) Energy (J)

(c) Comparison

Figure 8: Power-performance of running CLAMR (mixed) with and without hyperthreading

-3.30

-5.30

-4.20

-1.49

0.69 0.44

-3.07

7.33

0.91

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

Enabled (40) Enabled (20) Disabled (20)

P
K

G
 P

o
w

e
r

D
if

fe
re

n
ce

 (
W

)

PKG power imbalance HPL

STREAM

CLAMR

(a) Package power imbalance (PKG0 − PKG1)

0.44
0.34 0.34

0.59

1.07

1.84

-0.51

1.5 1.5

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

Enabled (40) Enabled (20) Disabled (20)

D
R

A
M

 P
o

w
e

r
D

if
fe

re
n

ce
 (

W
)

DRAM power imbalance

HPL

STREAM

CLAMR

(b) DRAM power imbalance (RAM0 − RAM1)

Figure 9: Imbalance of the two sockets in power consumption

-110.0 -110.0
-88.0

-69.6

59.3
82.5

-108.1

341.7

74.3

-200.0

-100.0

0.0

100.0

200.0

300.0

400.0

Enabled (40) Enabled (20) Disabled (20)

En
e

rg
y

U
se

 D
if

fe
re

n
ce

 (
J)

Energy consumption imbalance

HPL STREAM CLAMR

Figure 10: Imbalance in energy consumption

Overall, the imbalance is not very significant, considering
the much higher total energy consumption shown in Figures
7–9.

4.5 Effects of Core Affinity on Power-
Performance

In all of the preceding experiments, the application threads
and PAPI thread can run on any CPU cores (floating). Core
affinity (also called thread affinity [16]) enables us to pin an
application thread to a specific core. This set of experiments
is designed to characterize the influence of core affinity on
the power-performance of the benchmark applications run
on Haswell-EP processors.

Because we need to deal with both application threads and
the PAPI thread, we consider four cases: 1) both types of
threads are floating, denoted by (Appfloat, PAPIfloat); 2) the
PAPI thread is pinned to a core while letting the application
threads float, denoted by (Appfloat, PAPIpinned); 3) the two
types of threads are exchanged in the preceding case, as
(Apppinned, PAPIfloat); 4) both types of threads are pinned
to specific CPU cores, as (Apppinned, PAPIpinned). We have
already studied Case 1. In this section, we characterize the
power-performance of Haswell-EP in the other three cases.

0 50 100 150 200 250 300

CLAMR Package Power Consumption

Time(.1s)

0

20

40

60

80

100

120

140

160

P
ow

er
 C

on
su

m
pt

io
n(

w
)

No CPU Affinity
Pin PAPI

Pin Benchmark
Pin Both

Figure 11: Package power use of CLAMR with core affinity

Figures 11 and 12 show the results of running CLAMR in
the four affinity cases. 40 CLAMR threads and one PAPI
thread are run with hyperthreading enabled. In the figures,
we can see that employing different affinity strategies does
not lead to significant difference in the power consumption.
However, the execution time is slightly reduced (by 2.6%)
by having at least one type of threads pinned compared to
Case 1. HPL and STREAM display the similar pattern. We
omit their details due to space limit.

Figures 13 and 14 present the analytic results of the effects
of core affinity on the execution time, package and DRAM
power and energy consumption of the three applications. In

0 50 100 150 200 250 300

CLAMR Package Power Consumption

Time(.1s)

0
2
4
6
8

10
12
14
16
18
20
22

P
ow

er
 C

on
su

m
pt

io
n(

w
)

No CPU Affinity
Pin PAPI

Pin Benchmark
Pin Both

Figure 12: DRAM power use of CLAMR with core affinity

the first set (Figure 13), hyperthreading is enabled, which
enables the 40 application threads to run with 40 hyper-
threads without contention. In the other set (Figure 14), the
40 threads are run on 20 cores with hyperthreading disabled,
which introduces contention. It is clear based on the two fig-
ures that core affinity has marginal effects (marginal benefit
for CLAMR and marginal negative for HPL and STREAM).

In contrast, when contention exists, as shown in Figure 14,
core affinity substantially improves the performance and
energy saving. For example, by pinning the PAPI thread to
a core (Case 2), we can reduce the execution time of HPL
(Figure 14a) by 48% and thus save 48.2% energy, although
the package and DRAM powers remain unchanged. Cases 3
and 4 can also reduce 25% and 18.8% energy consumption,
respectively. STREAM, however, does not benefit that much
from core affinity. At most 8.2% of energy is saved in Case 3
compared to Case 1. Core affinity causes slight increase of the
package and DRAM power by 5.3% and 3.8%, respectively.
For CLAMR, core affinity saves a substantial amount of
energy, i.e., 19.3% in Case 3, 18.6% in Case 4 and 1.9% in
Case 2. The execution time is reduced by 23.9%, 23.7%, and
3.1%, respectively.

Therefore, when contention exists, core affinity can improve
the power-performance of applications. The more compute-
intensive an application is, the more benefit core affinity, in
particular Case 2 with the pinned PAPI thread, will result in.
With the increase of memory-boundness, pinning application
threads, i.e., Case 3, will yield better power-performance.

5. DISCUSSION AND FUTURE WORK
In our experiments, we measure the performance, power

and energy consumption of four selected benchmark appli-
cations with varying workload patterns run on a computer
server equipped with Haswell-EP processors.

An important issue that we have not yet addressed is the
inter-node communication and synchronization while run-
ning MPI applications on multiple nodes. The performance
variability of different nodes will add another dimension of
complexity to the power and energy optimization. We are
currently expanding the test to run HPC applications in a
multi-node environment and analyze the applications’ power-
performance. To reduce the performance variability among
nodes and CPU cores, we will explore the Turbo State Lim-
iting technology introduced by Haswell-EP to put a cap on
the turbo states of cores in order to enable applications to
run consistently across nodes.

The findings presented in Section 4 are based on the ex-
perimental results obtained from running the selected ap-
plications. As they represent different types of workload,

30.0

180.0

14.0

5900.0

30.0

190.0

14.0

6000.0

1.0

10.0

100.0

1000.0

10000.0

Exec time(s) PKG Power (W) RAM Power (W) Energy (J)

(F, F) (F, P) (P, F) (P, P)

(a) HPL

33.4

151.2

35.4

6235.24

34.6

152.5

34.8

6480.88

1

10

100

1000

10000

Exec time(s) PKG Power (W) RAM Power (W) Energy (J)

(F, F) (F, P) (P, F) (P, P)

(b) STREAM

30.2

137.8

16.5

4661.2

29.4

137.0

16.5

4514.1

1.0

10.0

100.0

1000.0

10000.0

Exec time(s) PKG Power (W) RAM Power (W) Energy (J)

(F, F) (F, P) (P, F) (P, P)

(c) CLAMR

Figure 13: Effects of Core Affinity on Power-Performance without Thread Contention. (App, PAPI) threads are either F
(floating) or P (pinned to cores)

1.0

10.0

100.0

770.0

190.0

14.0

160000.0

400.0

83000.0

580.0

120000.0

630.0

130000.0

1.0

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

Exec time(s) PKG Power (W) RAM Power (W) Energy (J)

(F, F) (F, P) (P, F) (P, P)

(a) HPL

39.1

130.6

31.8

6349.9

34.4

136.6

32.9

5829.5

1.0

10.0

100.0

1000.0

10000.0

Exec time(s) PKG Power (W) RAM Power (W) Energy (J)

(F, F) (F, P) (P, F) (P, P)

(b) STREAM

46.0

110.5

15.9

5815.6

35.0

117.8

16.4

4695.7

1.0

10.0

100.0

1000.0

10000.0

Exec time(s) PKG Power (W) RAM Power (W) Energy (J)

(F, F) (F, P) (P, F) (P, P)

(c) CLAMR

Figure 14: Effects of Core Affinity on Power-Performance with Thread Contention

people may challenge the generality of these findings. Our
goal is to cover the entire application spectrum, from com-
pute bound to memory bound programs. Our results show
that pure compute bound (e.g., HPL) and pure memory
bound (e.g., STREAM) have different power-performance
characterizations when they are run on Haswell-EP. The one
in-between (e.g., CLAMR) has the combined characteriza-
tions, which can be viewed as a verification of the findings.
To directly validate our findings, we plan to test more HPC
applications and use experimental results from applications
with similar workload types to cross-validate the findings.

In the preceding experiments, the P-states of all cores
in a socket is changed and set to the same frequency level,
which is commonly used in today’s HPC systems. Haswell
also provides a voltage and frequency domain for each core,
called Per-Core Power State (PCPS). PCPS enables us to
change the cores’ frequency independently. Moreover, we
can scale the frequency of the uncore, such as LLC and the
interconnect rings, up and down independently of the cores,
that is Uncore Frequency Scaling (UFS). We will extend our
work by designing experiments to test and characterize PCPS
and UFS of Haswell-EP from running HPC applications.

6. RELATED WORK
Power profiling in production computer systems provides

valuable data and knowledge for developing power simula-
tors and resource scheduling policies. Fine-grained power
profiling techniques measure the power usage of individ-
ual hardware components, such as CPU [12], memory [22],
disk [23] and other devices [21]. In contrast, coarse-grained
power profiling aims to characterize system-wide power dy-
namics, such as the macropower framework [24]. Kamil et
al. profiled HPC applications on several test platforms and
projected the power profiling results from a single node to
a full system [10]. Ge et al. studied the influence of soft-

ware and hardware configurations on the system-wide power
consumption [5]. They found that characteristics of HPC
applications affect the power usage of a system. Hackenberg
et al. performed a detailed analysis of Haswell’s P-state and
C-state transition latencies and the impact of Haswell’s new
power-management mechanisms on memory bandwidth and
performance reproducibility [7]. Our paper distinguishes
itself from these earlier efforts by measuring and analyzing
the impact of Haswell’s new power management features on
the power and performance of HPC-style codes.

To control the power usage of HPC systems, power cap-
ping [2] is a promising and effective approach. System op-
erators can balance the performance and power consump-
tion of clusters by adjusting the maximum amount of power
(a.k.a. power budget) that can be consumed by clusters. Pelly
et al. presented a dynamic power provisioning and capping
method at the [18] power distribution unit (PDU). They
proposed to shift the slack power capacity to servers with
growing power demand by using a heuristics policy. For
HPC jobs, many factors affect the power usage including
hardware configurations and resource utilization. Femal et
al. developed a hierarchical management policy to distribute
power budget among clusters [4]. Kim et al. investigated
the relation between CPU voltages and system performance
and power efficiency [11]. By exploiting the dynamic voltage
scaling (DVS) technologies, they proposed a task scheduling
policy which aims to minimize the energy consumption while
satisfying the specified performance requirements. Rountree
et al. proposed policies of overprovisioning hardware with
hardware-enforced power bounds and system-wide power
reallocation in an application-agnostic manner [3, 17]. We
have developed a full system simulator, TracSim [25], which
estimates the trapped power capacity under different power
capping and job scheduling policies. This related research
is complementary to our work in that our findings can con-
tribute to the design of effective job and resource management

techniques for energy-efficient high-performance computing.

7. CONCLUSIONS
Power and energy have become increasingly important

components of overall system behavior in high-performance
computing. In this work we evaluate the power management
techniques of the fourth-generation Haswell-EP processors,
including RAPL power monitoring, P-states, hyperthreading,
core affinity, and their effects on the power-performance of
HPC benchmarks.

We found that monitoring power onboard via RAPL con-
sumes 28.6% more power than idle system. Different settings
of P-states could provide efficient way to reach 33.3% energy
saving. Enabling hyperthreading and core affinity optimizing
are also approaches for energy efficiency. Differentiated core
affinity strategies could improve performance and energy
efficiency by 19–48%. At the same time, power and energy
imbalance can be observed between the two sockets. Our
experimental results and findings provide valuable informa-
tion for the development of new, efficient and effective power
management schemes.

8. ACKNOWLEDGEMENTS
This work was performed at the Ultrascale Systems Re-

search Center (USRC) at Los Alamos National Laboratory,
supported by the U.S. Department of Energy contract DE-
AC52-06NA25396. The publication has been assigned the
LANL identifier LA-UR-15-26774.

9. REFERENCES
[1] R. Brown et al. Report to Congress on server and data

center energy efficiency: Public law 109-431. Lawrence
Berkeley National Laboratory, 2008.

[2] J. Choi, S. Govindan, B. Urgaonkar, and
A. Sivasubramaniam. Profiling, prediction, and capping
of power consumption in consolidated environments. In
Proc. of MASCOTS, 2008.

[3] D. A. Ellsworth, A. D. Malony, B. Rountree, and
M. Schulz. POW: System-wide dynamic reallocation of
limited power in HPC. In Proc. of HPDC, 2015.

[4] M. E. Femal and V. W. Freeh. Boosting data center
performance through non-uniform power allocation. In
Proc. of IEEE ICAC, 2005.

[5] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and
K. W. Cameron. Powerpack: Energy profiling and
analysis of high-performance systems and applications.
IEEE Transactions on Parallel and Distributed Systems,
21(5):658–671, 2010.

[6] D. Hackenberg, R. Oldenburg, D. Molka, and
R. Schone. Introducing FIRESTARTER: A processor
stress test utility. In Proc. of IGCC, 2013.

[7] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka,
J. Schuchart, and R. Geyer. An energy efficiency
feature survey of the Intel Haswell processor. Proc. of
IEEE IPDPSW, 2015.

[8] P. Hammarlund, R. Kumar, R. B. Osborne, R. Rajwar,
R. Singhal, R. D’Sa, R. Chappell, S. Kaushik,
S. Chennupaty, S. Jourdan, et al. Haswell: The
fourth-generation Intel core processor. IEEE Micro,
(2):6–20, 2014.

[9] HPL. HPL: High Performance Linpack, 2003.

[10] S. Kamil, J. Shalf, and E. Strohmaier. Power efficiency
in high performance computing. In IPDPS, 2008.

[11] K. H. Kim, R. Buyya, and J. Kim. Power aware
scheduling of bag-of-tasks applications with deadline
constraints on dvs-enabled clusters. In CCGrid, 2007.

[12] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi,
and S. Dropsho. Profile-based dynamic voltage and
frequency scaling for a multiple clock domain
microprocessor. ACM SIGARCH Computer
Architecture News, 31(2):14–27, 2003.

[13] J. D. McCalpin. Memory bandwidth and machine
balance in current high performance computers. 1995.

[14] D. Nicholaeff, N. Davis, D. Trujillo, and R. Robey.
Cell-based adaptive mesh refinement implemented with
general purpose graphics processing units. Technical
report, Los Alamos National Lab, 2012.

[15] S. Pakin, C. Storlie, M. Lang, R. E. Fields, E. E.
Romero, C. Idler, S. Michalak, H. Greenberg,
J. Loncaric, R. Rheinheimer, et al. Power usage of
production supercomputers and production workloads.
Concurrency and Computation: Practice and
Experience, 2013.

[16] S. Parete-Koon. Process/thread affinity, 2015.

[17] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz,
and B. R. de Supinski. Exploring hardware
overprovisioning in power-constrained, high
performance computing. In Proc. of ICS, 2013.

[18] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch,
and J. Underwood. Power routing: dynamic power
provisioning in the data center. In ACM Sigplan
Notices, volume 45, pages 231–242, 2010.

[19] C. Piguet. Low-power electronics design. CRC press,
2004.

[20] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph,
P. Luszczek, D. Terpstra, and S. Moore. Measuring
energy and power with PAPI. In ICPPW, 2012.

[21] T. T. Ye, G. D. Micheli, and L. Benini. Analysis of
power consumption on switch fabrics in network
routers. In Proc. of ACM DAC, 2002.

[22] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J.
Irwin. The design and use of simplepower: a
cycle-accurate energy estimation tool. In Proc. of ACM
DAC, 2000.

[23] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, et al.
Modeling hard-disk power consumption. In FAST, 2003.

[24] Z. Zhang and S. Fu. Macropower: A coarse-grain power
profiling framework for energy-efficient cloud
computing. In IPCCC, 2011.

[25] Z. Zhang, M. Lang, S. Pakin, and S. Fu. Trapped
capacity: scheduling under a power cap to maximize
machine-room throughput. In Proc. of E2SC, 2014.

